On groups with one defining relation having an abelian normal subgroup.
نویسندگان
چکیده
منابع مشابه
On $m^{th}$-autocommutator subgroup of finite abelian groups
Let $G$ be a group and $Aut(G)$ be the group of automorphisms of $G$. For any natural number $m$, the $m^{th}$-autocommutator subgroup of $G$ is defined as: $$K_{m} (G)=langle[g,alpha_{1},ldots,alpha_{m}] |gin G,alpha_{1},ldots,alpha_{m}in Aut(G)rangle.$$ In this paper, we obtain the $m^{th}$-autocommutator subgroup of all finite abelian groups.
متن کاملAbelian subgroup separability of some one-relator groups
Following Malcev [5], we will call a subgroup M of a group G finitely separable if for any element g ∈ G, not belonging to M, there exists a homomorphism φ of group G onto some finite group X such that gφ / ∈Mφ. This is equivalent to the statement that for any element g ∈ G \M, there exists a normal subgroup N of finite index in G such that g / ∈MN . A group G is subgroup separable if each of i...
متن کاملOn non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
متن کاملsubgroup intersection graph of finite abelian groups
let $g$ be a finite group with the identity $e$. the subgroup intersection graph $gamma_{si}(g)$ of $g$ is the graph with vertex set $v(gamma_{si}(g)) = g-e$ and two distinct vertices $x$ and $y$ are adjacent in $gamma_{si}(g)$ if and only if $|leftlangle xrightrangle capleftlangle yrightrangle|>1$, where $leftlangle xrightrangle $ is the cyclic subgroup of $g$ generated by $xin g$. in th...
متن کاملA REDUCTION THEOREM FOR UNil OF FINITE GROUPS WITH NORMAL ABELIAN SYLOW 2-SUBGROUP
Let F be a finite group with a Sylow 2-subgroup S that is normal and abelian. Using hyperelementary induction and cartesian squares, we prove that Cappell’s unitary nilpotent groups UNil∗(Z[F ];Z[F ],Z[F ]) have an induced isomorphism to the quotient of UNil∗(Z[S];Z[S],Z[S]) by the action of the group F/S. In particular, any finite group F of odd order has the same UNil-groups as the trivial gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1969
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1969-0245656-4